Part Number Hot Search : 
11411220 5262B PM7351 MAX1706 MM8221 78E05 EMK41H2 ZMM33
Product Description
Full Text Search
 

To Download G4PH40KD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irG4PH40KD insulated gate bipolar transistor with ultrafast soft recovery diode e g n-channel c v ces = 1200v v ce(on) typ. = 2.74v @v ge = 15v, i c = 15a pd- 91577b to-247ac short circuit rated ultrafast igbt parameter max. units v ces collector-to-emitter voltage 1200 v i c @ t c = 25c continuous collector current 30 i c @ t c = 100c continuous collector current 15 i cm pulsed collector current  60 a i lm clamped inductive load current  60 i f @ t c = 100c diode continuous forward current 8.0 i fm diode maximum forward current 130 t sc short circuit withstand time 10 s v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 160 p d @ t c = 100c maximum power dissipation 65 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbfin (1.1 nm) 2/7/2000 parameter min. typ. max. units r jc junction-to-case - igbt ??? ??? 0.77 r jc junction-to-case - diode ??? ??? 1.7 c/w r cs case-to-sink, flat, greased surface ??? 0.24 ??? r ja junction-to-ambient, typical socket mount ??? ??? 40 wt weight ??? 6 (0.21) ??? g (oz) thermal resistance absolute maximum ratings w features features features features features  high short circuit rating optimized for motor control, t sc =10s, v cc = 720v , t j = 125 c, v ge = 15v  combines low conduction losses with high switching speed  tighter parameter distribution and higher efficiency than previous generations  igbt co-packaged with hexfred tm ultrafast, ultrasoft recovery antiparallel diodes  latest generation 4 igbt's offer highest power density motor controls possible  hexfred tm diodes optimized for performance with igbts. minimized recovery characteristics reduce noise, emi and switching losses  this part replaces the irgph40kd2 and irgph40md2 products  for hints see design tip 97003 benefits www.irf.com 1 free datasheet http://
irG4PH40KD 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ? 94 140 i c = 15a q ge gate - emitter charge (turn-on) ? 14 22 nc v cc = 400v see fig.8 q gc gate - collector charge (turn-on) ? 37 55 v ge = 15v t d(on) turn-on delay time ? 50 ? t r rise time ? 31 ? t j = 25 c t d(off) turn-off delay time ? 96 140 i c = 15a, v cc = 800v t f fall time ? 220 330 v ge = 15v, r g = 10 ? e on turn-on switching loss ? 1.31 ? energy losses include "tail" e off turn-off switching loss ? 1.12 ? mj and diode reverse recovery e ts total switching loss ? 2.43 2.8 see fig. 9,10,18 t sc short circuit withstand time 10 ?? s v cc = 720v, t j = 125 c v ge = 15v, r g = 10 ? , v cpk < 500v t d(on) turn-on delay time ? 49 ? t j = 150 c, see fig. 10,11,18 t r rise time ? 33 ? i c = 15a, v cc = 800v t d(off) turn-off delay time ? 290 ? v ge = 15v, r g = 10 ?, t f fall time ? 440 ? energy losses include "tail" e ts total switching loss ? 5.1 ? mj and diode reverse recovery l e internal emitter inductance ? 13 ? nh measured 5mm from package c ies input capacitance ? 1600 ? v ge = 0v c oes output capacitance ? 77 ? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ? 26 ?? = 1.0mhz t rr diode reverse recovery time ? 63 95 ns t j = 25 c see fig. ? 106 160 t j = 125 c 14 i f = 8.0a i rr diode peak reverse recovery current ? 4.5 8.0 a t j = 25 c see fig. ? 6.2 11 t j = 125 c 15 v r = 200v q rr diode reverse recovery charge ? 140 380 nc t j = 25 c see fig. ? 335 880 t j = 125 c 16 di/dt = 200as di (rec)m /dt diode peak rate of fall of recovery ? 133 ? a/s t j = 25 c see fig. during t b ? 85 ? t j = 125 c 17 switching characteristics @ t j = 25c (unless otherwise specified) ns ns parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage  1200 ?? vv ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ? 0.37 ? v/ cv ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ? 2.74 3.4 i c = 15a v ge = 15v ? 3.29 ? vi c = 30a see fig. 2, 5 ? 2.53 ? i c = 15a, t j = 150 c v ge(th) gate threshold voltage 3.0 ? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ? -3.3 ? mv/ cv ce = v ge , i c = 250a g fe forward transconductance  8.0 12 ? sv ce = 100v, i c = 15a i ces zero gate voltage collector current ?? 250 a v ge = 0v, v ce = 1200v ?? 3000 v ge = 0v, v ce = 1200v, t j = 150 c v fm diode forward voltage drop ? 2.6 3.3 v i c = 8.0a see fig. 13 ? 2.4 3.1 i c = 8.0a, t j = 125 c i ges gate-to-emitter leakage current ?? 100 na v ge = 20v electrical characteristics @ t j = 25 c (unless otherwise specified) free datasheet http://
irG4PH40KD www.irf.com 3 0.1 1 10 100 0 5 10 15 20 25 f, frequency (khz) load current (a) fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) for both: duty cycle: 50% t = 125 c t = 90 c gate drive as specified sink j power dissipation = w 35 60% of rated voltage i ideal diodes square wave: fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 1 10 100 1 10 v , collector-to-emitter volta g e (v) i , collector-to-emitter current (a) ce c  v = 15v 20 s pulse width ge  t = 25 c j  t = 150 c j 1 10 100 4 6 8 10 12 14 v , gate-to-emitter volta g e (v) i , collector-to-emitter current (a) ge c  v = 50v 5 s pulse width cc  t = 25 c j  t = 150 c j free datasheet http://
irG4PH40KD 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 25 50 75 100 125 150 0 5 10 15 20 25 30 t , case temperature ( c) maximum dc collector current(a) c 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1  notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c  p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50  single pulse (thermal response) -60 -40 -20 0 20 40 60 80 100 120 140 160 2.0 2.5 3.0 3.5 4.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce  v = 15v 80 us pulse width ge  i = a 30 c  i = a 15 c  i = a 7.5 c free datasheet http://
irG4PH40KD www.irf.com 5 fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage 0 20 40 60 80 100 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge  v = 400v i = 15a cc c 1 10 100 0 500 1000 1500 2000 2500 v , collector-to-emitter voltage (v) c, capacitance (pf) ce  v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies g e g c , ce res g c oes ce g c  c res  c oes  c ies 0 10 20 30 40 50 2.0 2.2 2.4 2.6 2.8 3.0 r , gate resistance (ohm) total switching losses (mj) g  v = 480v v = 15v t = 25 c i = 15a cc ge j c r g , gate resistance ( ? ) -60 -40 -20 0 20 40 60 80 100 120 140 160 0.1 1 10 100 t , junction temperature ( c ) total switching losses (mj) j  r = ohm v = 15v v = 480v g ge cc  i = a 30 c  i = a 15 c  i = a 7.5 c 10 ? 800v 800v free datasheet http://
irG4PH40KD 6 www.irf.com 1 10 100 1 10 100 1000 10000  v = 20v t = 125 c ge j o  safe operating area v , collector-to-emitter volta g e (v) i , collector-to-emitter current (a) ce c 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 i , collector-to-emitter current (a) total switching losses (mj) c  r = ohm t = 150 c v = 480v v = 15v g j cc ge fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current fig. 11 - typical switching losses vs. collector-to-emitter current 1 10 100 0246810 fm f instantaneous forward current - i (a) forward volta g e drop - v ( v ) t = 150 c t = 125 c t = 25 c j j j 10 ? 800v free datasheet http://
irG4PH40KD www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 100 200 300 400 500 600 100 1000 f di /dt - ( a/ s ) rr q - (nc) i = 16a i = 8 .0a i = 4.0a f f f v = 200v t = 125 c t = 25 c r j j 10 100 1000 100 1000 f di /dt - ( a/ s ) di(rec)m/dt - (a/s) i = 1 6a i = 8.0a i = 4 .0a f f f v = 200v t = 125 c t = 25 c r j j 0 40 80 120 160 200 100 1000 f di /dt - ( a/ s ) t - (ns) rr i = 16a i = 8.0a i = 4 .0a f f f v = 200v t = 125 c t = 25 c r j j 1 10 100 100 1000 f di /dt - ( a/ s ) i - (a) irrm i = 1 6a i = 8.0a i = 4.0a f f f v = 200v t = 125 c t = 25 c r j j free datasheet http://
irG4PH40KD 8 www.irf.com same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+ 5 s vce ic dt 90% vge +vge eoff = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr vd ic dt vce ic dt ic dt vce ic dt free datasheet http://
irG4PH40KD www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. 
    figure 20.    
   r l = 800v 4 x i c @25 c 0 - 800v figure 18e.        free datasheet http://
irG4PH40KD 10 www.irf.com dimensions in millimeters and (inches) conforms to jedec outline to-247ac ( to-3p ) - d - 5.30 (.209) 4.70 (.185) 3.65 (.143) 3.55 (.140) 2.50 (.089) 1.50 (.059) 4 3x 0.80 (.031) 0.40 (.016) 2.60 (.102) 2.20 (.087) 3.40 (.133) 3.00 (.118) 3x 0.25 (.010) m c a s 4.30 (.170) 3.70 (.145) - c - 2x 5.50 (.217) 4.50 (.177) 5.50 (.217) 0.25 (.010) 1.40 (.056) 1.00 (.039) d m m b - a - 15.90 (.626) 15.30 (.602) - b - 1 23 20.30 (.800) 19.70 (.775) 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2x 2x 5.45 (.215) * notes: 1 dime nsions & t ole ranc in g per a nsi y14.5m , 1982. 2 con trollin g dimen sion : inch. 3 dime nsions a re sho w n millimet ers (inch es). 4 con form s to jedec o utline to-247ac. lead assignments 1 - gat e 2 - collecto r 3 - emitt er 4 - collecto r * lo nge r lea ded (20m m ) version available (to-247ad) to order add "-e" suffix to part number case outline ? to-247ac notes:  repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20)  v cc =80%(v ces ), v ge =20v, l=10h, r g = 10 ? (figure 19)  pulse width 80s; duty factor 0.1%.  pulse width 5.0s, single shot. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir european regional centre: 439/445 godstone rd, whyteleafe, surrey cr3 obl, uk tel: ++ 44 (0)20 8645 8000 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 (0) 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 011 451 0111 ir japan: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo 171 tel: 81 (0)3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 (0)838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673 tel: 886-(0)2 2377 9936 data and specifications subject to change without notice. 6/00 free datasheet http://


▲Up To Search▲   

 
Price & Availability of G4PH40KD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X